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Free-stream turbulence is modelled by a low-intensity array of vortices where the vor- 
ticity is distributed continuously throughout the flow. This vorticity approaches and 
convects along a semi-infinite flat plate and the structure of the free-stream disturb- 
ances is altered by the impermeability condition at  the plate. The analysis consists of 
tracking the vorticity as it convects with the uniform mean flow, determining the 
stream function induced by that vorticity field without imposing the impermeability 
condition, and finally superimposing an irrotational flow field which effects imper- 
meability. The bisecting of a vortex as it encounters the plate yields a pair of vortices 
which rotate in the same direction. The combined heights of these vortices are less than 
the height of the original vortex. Small segments of a vortex which has been cut by the 
plate, but not through its centre, are completely absorbed by neighbouring vortices. 
Far from the leading edge in any direction, the disturbance pressure is O(pq2), where q 
is the characteristic disturbance speed, and the streamline patterns convect with the 
mean flow. Near the leading edge, the fluctuating pressure is O(pqU,) because of un- 
steady vortex distortion and the velocity correlations reveal that Taylor's hypothesis 
is not valid. These correlations are based on averages over time and over all possible 
orientations of the vortex array. Vortex structures based on iso-vorticity contours are 
sometimes quite different from the structures based on disturbance streamlines. 

1. Introduction 
Fluids in motion often contain turbulence or other unsteady rotational structures 

which propagate by convection and other mechanisms, and there are many interactions 
between the patches or filaments of vorticity in the free-stream flow. If a plate, airfoil 
or other impermeable body is immersed in that fluctuating vortical flow, then new 
features arise as the eddies or vortices ' collide ' with the plate and adjust to the imper- 
meability and no-slip conditions at  the surface and the shearing environment of the 
boundary layer developing along the plate. The features examined in this study are the 
effects of the impermeability condition on the unsteady flow field and pressure field. 

An inviscid study of a semi-infinite plate in a flow field with rotational free-stream 
disturbances yields many results useful for later studies of the effects of free-stream 
unsteadiness and rotationality on boundary layers, on heat transfer and skin friction 
along the plate, and on laminar-turbulent boundary-layer transition. The unsteady 

t Present address : Department of Aerospace Engineering, University of Southern California, 
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pressure distribution along the plate, while serving as necessary input into boundary- 
layer analyses, also would be of importance for the aerodynamic loading and moments 
on the plate, just as for a plate of finite length modelling a thin airfoil. If the plate is 
'very long ' relative to  the wavelength of the free-stream disturbance, however, then 
the aerodynamic loading on a semi-infinite plate would be similar in some respects to 
the loading on a plate of finite length but without the complications of the unsteady 
bound circulation and the oscillating vortex sheets downstream of a plate of finite 
length, which are associated with the trailing edge. Finally, the unsteady pressure field 
established when the free-stream disturbances impinge on a plate would be required 
as the forcing function which links the incompressible pressure field with the sound 
generated. 

Probably the most common rotational free-stream disturbance is turbulence, but 
other forms are the vorticity shed from upstream bodies in the form of wakes, vortex 
streets, vortex sheets and rings, or other patches or layers of vorticity convected along 
in the 0ow. Mainly guided by the many observations that eddies or other vortical 
structures exist in turbulence and with the intent of modelling some of their unsteady 
rotational features, we represent the turbulence by an array of vortices. Rather than 
resorting to  empirical modelling of the Reynolds stresses, eddy viscosities or mixing 
lengths in the mean equations, rather than considering the dynamical equations for the 
disturbance correlations, and rather than considering one Fourier mode or plane wave 
interacting with the body, we seek the unsteady interaction of this vortex array with a 
semi-infinite plate. While the objective is to determine the instantaneous flow field, 
certain averaged properties such as the velocity correlations are obtained from suitable 
averages of the unsteady flow field. 

In  the remainder of this section, some properties of vortex arrays are presented and 
previous studies with vortex arrays are summarized. The two-wavenumber model 

u'(x, y ,  t )  = - q1 cos (By + yl) sin [a($ - c t )  + xl] = - $I, 
w'(x, y ,  t )  = q2 sin (py  + y l )  cos [a(s - c t )  + x13 = $:, 

$'(x, y ,  t )  = (q l /P)  sin (PY + Y A  sin 

5'(x, y ,  t )  = vj. - u; = - (a2 + p2) $' = 0 2 $ '  

( 1 . 1 )  

(1.2) 

(1.3)  

(1.4) 

- c t )  +x l l ,  

for the velocities, stream function and vorticity represents an array of non-decaying 
vortices with rectangular boundaries which propagates at  speed c in the x direction. 
" L " ~  and y1 are phase angles or shifting parameters in the x and y directions. Continuity 
is satisfied if the amplitudes and wavenumbers are related by 

-q1a+qzp = 0. (1.5) 

Direct substitution of the stream function $ = - U, y + $' into the inviscid equation 

+-- vz$b = 0 I (---- a a$ a a$ a 
at ay ax ax ay 

gives c = ti,, i.e. the vortices convect with the mean flow. Additionally, since the 
velocity field also convects with the mean flow, two distinct balances arise in bhe Euler 
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equations: (1) the balance between the linear inertial terms and (2) the balance between 
the nonlinear and pressure-gradient terms, i.e. 

I ‘  
I ’  

balance 2 balance 1 

These balances are exact in the limit of infinite Reynolds number and approximately 
correct when the Reynolds number based on the length or width of the vortex (which- 
ever is smaller) is sufficiently large that spatial decay? is negligible. Except that the 
intensity (q: + q$/U, cannot be so large that compressibility effects are significant, 
the form of the array and the satisfaction of Taylor’s hypothesis are not limited to low 
intensities. 

I n  the present work, the vortices are square and convect with the mean flow. The 
amplitudes and wavenumbers in the two directions are equal. The two-dimensionality 
and square geometry of the vortices have been adopted for simplicity. Three-dimen- 
sional skewed models of this array were considered by Rogler & Reshotko (1974, 
hereafter referred to as V). Both a cubicaI non-convected model and a two-dimensional 
model with different amplitudes in different directions were considered by Taylor 
(1936) to obtain the mean-square pressure fluctuation in an eddying flow. Taylor & 
Green (1 937) also used arrays of cubical vortices to  illustrate the evolution of smaller 
vortices from larger ones, and several other studies summarized by Van Dyke (1977) 
have extended these results. 

If the characteristic length A (the vortex ‘diameter’ or half-wavelength), the charac- 
teristic disturbance speed q (the maximum speed at the four midpoints of the vortex 
boundaryl), the characteristic time A/Um (the time required for a vortex to convect a 
distance of one diameter), the characteristic stream function q R  and the characteristic 
vorticity q / A  are introduced, then the dimensionless disturbance fields are 

(longitudinal velocity), da) = - cos (ny + yl) sinn(x - t )  = - ~ f )  (1.8) 

(1.9) 

(1 .lo) 

da) = sin (ny + yl) cos n(x - t )  = $2) (lateral velocity), 

5‘”) = - 2n sin (ny +yl) sin n(x - t )  = - ZnZ$(a’ (vorticity), 

= n-lsin (ny + yl) sin n(x  - t )  = - c ( a ) / W  (stream function), 

(1.11) 

as illustrated in figure 1. The superscript ( a )  emphasizes that these are the disturbance 
variables which exist in the absence of any plate or other body immersed in the flow. 
Note that all wavenumbers and the frequency are equal. The parameter y1 shifts the 
array in they direction. When y1 = 0, the x axis coincides with the boundary between 
two rows of vortices; if y1 = in, then the x axis bisects one row of vortices through their 
centres, as shown in figure 2. Other values are also possible, although attention can 
be restricted to the range 0 < y1 < 2n because of the periodic character. The phase 
angle x1 in (1.1)-( 1.4) is neglected since the time variable is available to control the x 
positioning of the array. 

For temporal decay of a homogeneous array, the viscous terms combine with the linear 

2 The maximum disturbance speed is twice the r.m.s. value when averaging is carried out 
inertial terms to yield again two distinct balances, but now valid for all Reynolds numbers. 

over the cross-sectional area of one vortex. 
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FIGURE 1. Disturbance streamlines for a harmonic vortex and disturbance velocity profiles for 
its counter-rotating neighbour. The streamlines are also contours of constant vorticity and 
disturbance pathlines. 

- 

FIGURE: 2. Contours of constant vorticity for an array of high Reynolds number, low-intensity 
vortices convecting beside a semi-infinite plate. The shifting parameter governing the y orienta- 
tion of the array with respect to the plate has the value y1 = glr while the time t = 4. 

Near the centres of these vortices, the fluid is in nearly solid-body (wheel-like) 
rotation and the vorticity diminishes to zero along the square boundaries. Stagnation 
points occur a t  the centre and four corners of each vortex. If averaging is carried out 
over one time period and over the range 0 < y1 < 271 of the shifting parameter, then 
this array is homogeneous and isotropic (in a two-dimensional sense) and has a zero 
Reynolds stress. 

Other properties of this array are presented in V and Rogler & Reshotko (1975, 
hereafte? VI), where the interaction of an array with a parallel-flow Blasius layer in a 
linearized study included the effects of a non-uniform mean shear, impermeability and 
the no-slip condition. Rogler (19750,) hereafter 11) includes the case of an array of 
vortices propagating past plates of finite length. An initial-value problem for a vortex 
array impulsively cut by a plate is presented in Rogler (1975b, hereafter 111). In 
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Rogler (1977, hereafter IV), the stream function is specified along the y axis and thus 
no upstream influence of the leading edge on the unsteady flow is permitted. This 
restriction is eliminated in the present work, where the stream function is specified 
far upstream. 

In  the next section, we outline the conditions under which the disturbance vorticity 
convects with the mean flow. In  $3,  an explicit solution for the stream function is 
obtained for unsteady flow past a semi-infinite plate. I n  $4, 'double-averaging' is 
introduced and applied to the two-point velocity correlations. In  $ 5 ,  the flow field 
is found for the region far downstream of the leading edge. Several complications and 
observations associated with interpreting eddying flow fields are illustrated in $ 6. In  
$ 7 ,  the disturbance pressure is obtained via the unsteady linearized Bernoulli equation. 
Results are summarized in 3 8. 

2. Mean and disturbance vorticity 
Vorticity in a two-dimensional flow with constant viscosity and density is governed 

by the equation 

for the component of vorticity 6 in the z direction. When the vorticity and velocities 
are separated into mean and disturbance contributions, introduced into (2.1) and 
suitably averaged (over one time period if the disturbances are periodic), an equation 
governing the mean vorticity results. We now non-dimensionalize the mean equation 
using our experience with elementary boundary layers and the behaviour of vorticity 
disturbances away from boundaries t o  select characteristic variables. While the non- 
dimensionalizations are not uniformly valid throughout the many contrasting regions 
and layers, a useful framework follows from the substitutions 

(2.2) 

x = Lx2, y = Py,, 5 = u, q/6*, i7 = D, a, v = s*u, V / L  
for mean quantities and their derivatives, 

x = Ax, y = Ay, 5' = qc ' /A ,  U' = qu', u = put, t = &/Urn 
for disturbance quantities and their derivatives. 

To remind us that the averaging of products depends on the phase relationships 
between the disturbance quantities being averaged, we further introduce a constant c 
of magnitude 0 < c d 1, where c may be much less than one since correlations of 
nearly 'out-of-phase' variables may be much less than the products of the reference 
quantities. S* is the boundary-layer displacement thickness, (I is the characteristic 
disturbance speed and A is the characteristic scale of the vorticity disturbance. 
Under this non-dimensionalization, the mean vorticity equation is 

(a) ( b )  (C) 

where ac/at = 0. For cS*q2/AU: < I and R& 6 1 ,  we neglect terms (a) ,  ( b )  and ( c )  
relative to  the other terms, which are of unit order. Under these conditions, mean 
vorticity exists near a body submerged in a field of vorticity disturbances as a result of 
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the convection and diffusion of vorticity originating a t  the boundary in the usual form 
of a boundary layer. Outside the boundary layer, the mean flow remains irrotational if 
it  is assumed that a uniform mean flow exists far upstream. 

The disturbance vorticity equation is now 

where RA = U, Alv .  We begin our simplification by restricting attention to regions 
outside the mean boundary layer where = 1 in term (d )  and neglect the O(l /R , , )  
term ( e ) ,  which may be of importance near the leading edge. Outside the boundary 
layer, terms (f) and (9)  are identically zero in the irrotational mean flow. 

Neglecting the nonlinear terms 
For low-intensity disturbances, i .e. q/Um < 1 , we eliminate the nonlinear terms (h)  and 
(i) and their averages (j) and (L). We have shown previously that these terms vanish 
identically in the free stream. In the region near the wall, although not all the 
nonlinear terms vanish, we can estimate a posteriori their accumulative influence 
downstream of the leading edge. From 111, the nonlinear terms are 

(uf + 2)’ g) = n2 sin y1 e-ny sin 2n(x - t )  [sin (my + yl) + cos (ny + yl)]. (2.5) urn ay urn 

Note that the nonlinear terms vanish far away from the wall and also when y1 = 0. 
When averaged over one time cycle 0 < t < 2,  terms (j) and (k) vanish in (2.4). When 
y1 = &n, n(x- t) = $77 and y = 0,  the above terms reduce to n2q/Urn. 

To estimate the accumulative effects of these terms, we ask, ‘At what distance L 
downstream have these terms “significantly altered” the vorticity field (say by some 
fraction c of the vorticity maximum)?’ Away from the leading edge, the above 
influence is constant and will be integrated over the intervad 0 < x < L. The result is 

L = dJrn/q. (2.6) 

Hence the distance downstream where a ‘significant ’ rearrangement of vorticity has 
occurred is inversely proportional to the intensity. If 6 = 0.1 (i.e. the vorticity field 
has been changed by 10 ”/o of cmax) and the intensity is q/Um = 0.01, then L = 10 
vortex diameters. This estimate is conservative since y1 can take on all values in the 
range 0 < y1 < 2n. 

In a small region very near bhe leading edge, the disturbances velocities are large 
and nonlinear rearrangement of vorticity will be significant. However, this region can 
be made small by reducing the intensity of the disturbances. As long as one stays 
outside this region ‘very near’ the leading edge and outside the ‘very thin’ layer 
along the plate downstream of this region, these invjscid nonlinear effects should not 
be significant. Rogler (1974, hereafter I) is a study of a single potential vortex in 8 

uniform mean flow whose trajectory is affected by these nonlinearities, which are shown 
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to be negligible if the parameter 1 I'/2nrbUmI is small, where I' is the circulation of the 
vortex and b is its lateral distance from the plate when any effects on the trajectory 
are neglected. 

Neglecting the viscous terms 

For large Reynolds numbers based on the vortex diameter, i.e. R, = 1/E 1 ,  we 
neglect the viscous terms (I) and (m).  Away from any wall, Rogler & Reshotko (1976, 
hereafter VII) demonstrated that the vorticity amplitude decays as exp ( - fi nx), 
where 

fi(e) = 2 n ~ - l 2 n ~ s ~ + O ( ~ ~ )  as E + O .  (2.7) 

The first term in the series represents the temporally decaying solution by Taylor 
(1  923) transformed to a spatially decaying array by using Taylor's hypothesis. 
Expanding the exponential shows that the amplitude is diminished by a fraction 
f in the dimensionless distance 

For a vortex of diameter lm  in air at  30 "C convecting at  100 m/s with f = 0.1, 

L / A  = fR,/2n2. (2.8) 

R, = 6 x lo6 and L/R = 3 x lo4, 

i.e. the vorticity amplitude decays by 10 yo in a distance of 30000 ms. For a 1 cm vortex 
in water, R, = 1.25 x lo6 and L = 62 m. 

This decay rate differs appreciably from the decay of turbulence since it represents 
the decay of a single-wavenumber disturbance. In turbulence, viscous decay occurs in 
the high wavenumber dissipation subrange, with transfer from the lower wave- 
numbers arising via nonlinear interactions. Hunt (1  973) developed a statistical theory 
for the linearized inviscid distortion of three-dimensional turbulence about two- 
dimensional bluff bodies, including the effects of vortex stretching, then applied his 
formulation to the case of flow past a circular cylinder, neglecting any mean boundary 
layers. He estimated the decay length based on the Kolmogorov dissipation length. 
The spirit of his estimate is believed proper for turbulence, although the effects of the 
nearby wall on the dissipation length should be taken into account. 

For regions near the plate, but not within the sublayer, I11 showed that the re- 
arranged flow field near the plate decays about twice as fast as in the free stream, so an 
additional factor of 2 in the denominator of (2.8) is warranted. A much greater viscous 
effect arises in the viscous sublayer near the boundary. For disturbances of length 
h (perhaps smaller than A )  propagating at  speed c (generally less than Um), if 

h /c  = O ( h / U m )  

then a balance between the unsteady and y viscous terms yields the estimate that the 
thickness of the sublayer is 

which would be very small for the large Reynolds number cases of interest herein. 
This estimate is based on the assumption that the mean flow is at rest near the wall, 

reflecting the smallness of the mean velocity in the boundary layer near the wall. 
The result is a viscous sublayer which diffuses outwards in the characteristic time 
AIU,. However, if the mean flow is uniform everywhere, as would arise if the surface 
were allowed to move with the mean flow and consequently no mean boundary layer 

&,*/A = O(R&, (2.9) 
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developed, then the character of the viscous layer is different. The relevant time scale 
is now LIU,, which is the time required for a vortex to convect from the leading edge 
(where the viscous layer begins diffusing) downstream to the position L of interest. 

For an observer moving with the free stream, balancing the unsteady and y viscous 
terms yields an estimate of the viscous-layer thickness of 

6z/L = O(Ri4)  or 6;/R = O((L/RR,)+). (2.10) 

Consequently, the thickness of this unsteady viscous layer grows parabolically in the 
downstream direction as does an ordinary boundary layer if the mean flow is every- 
where uniform. 

With either estimate, depending on which mean flow exists, we shall restrict atten- 
tion to regions outside both the mean and the unsteady viscous layer. 

The possibility remains that the vorticity field inside the boundary layer, which we 
acknowledge to have been altered by the terms (d),  (9) and perhaps others, will alter 
the vorticity field outside the boundary layer. V and VI reveal that this influence 
exists, but if the displacement thickness is small with respect to the vortex diameter, 
i.e. d * / R  4 1,  then the effect is small. Although that work was based on disturbances 
which propagate with the free stream and other phase speeds are also possible, we shall 
apply that conclusion here and thus neglect any influence the boundary layer may 
have on the vorticity field just outside the boundary layer. 

Little can be said at  this time regarding unsteady viscous effects a t  a sharp leading 
edge. The steady case was considered analytically by Carrier & Lin (1  948) and numeri- 
cally by Van de Vooren & Dijkstra (1970). Others have studied oscillating flows about 
blunt cylindrical bodies under high Reynolds number conditions with thin unsteady 
stagnation boundary layers and with irrotational disturbances of form E exp (iwt),  but 
their relationships to flows about thin blunt plates with rotational travelling fluctua- 
tions are unclear. 

The unseparated solution which we seek with a plate of zero thickness is believed to 
be valid for a thin plate with a streamlined nose and with low-intensity fluctuations. 
The thickness of the plate should be small relative to the vortex scale so that negligible 
distortion of the vorticity field occurs, but sufficiently thick so that the flow about the 
leading edge remains small. The intensity of the free-stream fluctuations as well as the 
nose shape and other factors will dictate the magnitude of the flow about the leading 
edge, which can be made as small as desired as long as the plate thickness does not 
vanish. How small q/Um and how large the thickness must be to eliminate separation 
must await further research. 

Simplijied vorticity equation 
In  summary, under the conditions q/Um < 1 , R, 9 1 and k = mP/R < 1 ,  the mean flow 
can everywhere be modelled by its irrotational free-stream value with the under- 
standing that the solution is not valid in the viscous sublayer. Should the condition 
k < 1 not be satisfied, t,hen the solution would not be valid either in or near the bound- 
ary layer. The disturbance vorticity equation now reduces to 

ac'/at + a"/ax = 0, 

C'(& y ,  t )  = C' (2  - t ,  y )  = C'"', 

(2.11) 

(2.12) with solution 
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i.e. the vorticity field is unaffected by the presence of the plate and convects with the 
uniform mean flow. The contours of constant vorticity for flow past a semi-infinite 
plate are shown in figure 2. However, through the impermeability condition, the 
velocity field and stream function will be altered by the plate. 

This result is analogous to the ‘rapid-distortion’ theories of Prandtl(1933), Taylor 
(1 935) and Batchelor & Proudman (1 954), who addressed the distortion of turbulence 
arising from quasi-one-dimensional changes in the mean flow field such as a contrac- 
tion in a wind tunnel. Hunt (1973) also developed an analogous result for the vorticity 
convected by the irrotational mean flow past a cylinder. 

Although the source of the vorticity disturbances is unimportant, conceptually i t  
may be helpful to assume that a ‘screen’ located upstream of the plate generates these 
vortices. I n  this inviscid analysis, the geometrical factor specifying the position of the 
screen is eliminated by moving it an unlimited distance upstream. Hence these 
vortices are input a t  ‘minus infinity’ and convect downstream. They reach the plate 
after an unlimited time, the initial transient effects vanish and a steady-state oscilla- 
tion is established which is the objective of the ensuing analysis. 

3. Disturbance stream function 
While the disturbance vorticity convects with the mean flow and is unaffected by the 

presence of the plate, the stream function and velocities in some region near the plate 
will be affected by the impermeable boundary. Since no vorticity is generated when the 
vortices ‘collide’ with the plate, the disturbance stream function $‘ with the plate 
present is related to that vorticity by Poisson’s equation 

VZ$‘ = ly). (3.1) 

This stream function is now separated into two components 

(3.2) $’ = $(a) - @(O, 

where $(a) is the stream €unction for the free-stream disturbances in the absence of the 
plate as given by (1.10) and $(‘) is the irrotational, irnpermeability stream function, 
which represents the irrotational alteration to those free-stream disturbances arising 
because of the impermeability condition. Hence this stream function satisfies Laplace’s 

VZ$r(O = 0 equation 

and, when combined with $-(a) in (3.2), satisfies impermeability. 

problem and time, but is not dependent on the position along the plate. Hence, if 

(3.3) 

Now, at the plate $’ = which may be a function of the parameters of the 

$I  = $ - $(a)- $(O 

along the plate, then the appropriate condition on Laplace’s equation a t  the plate is 
$(i) = $(a) - If $(a) is evaluated along y = 0, then the boundary condition along the 
plate becomes 

Since the impermeability condition is applied only along the plate, this condition is 
not applicable upstream of the plate, i.e. for negative x. Furthermore, for this elliptic 

0 -  

$(O = 7r-l sin y, sin n(x - t )  - $o(t) for O < z < co. (3.4) 
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problem, the conditions that @i) vanishes for large distances normal to the plate and 
far upstream must be added. These conditions reflect our intuition that the influence 
of the plate is limited to some region near the plate and vanishes far away. Finally, far 
downstream of the leading edge but near the plate, the solution must be bounded. 

For the present formulation, a direct solution of Laplace’s equation subject to a 
Dirichlet condition only along the +x axis would be difficult. Instead, we exploit the 
symmetry about the x axis, add the homogeneous Neumann condition along the 
-x axis, i.e. 

(3.5) a p y a y  = o for y = 0, --co < x < 0, 

and restrict attention to the half-plane y > 0 while solving for $(a. 
To alleviate the problem of split boundary conditions along the x axis, we con- 

formally map the half-plane y > 0 onto the quarter-plane 0 < 5 < 00, 0 < r , ~  < co 
through the transformation 

(3.6) 5 = E+ir,I = (x+iy)& = z t .  

If z = reio, where 0 2 8  < Zn, then z t  = r t e i i o  is the intended root. Under this 
transformation, the +x axis maps onto the + 5 axis and the - x axis maps onto the 
+ 7 axis. In  this co-ordinate system, the boundary-value problem is 

(3.7) 

$0 = n-1 sin y1 sin n(E2 - t )  - $o( t )  for 7 = 0, [ > 0, (3.8) 

$f )  = o for > 0, [ = 0, (3.9) 

7,Wi)-+0 as ~ - + c o ,  (3.10) 

(3.11) qVi) bounded near the plate as (-+ co. 

The origin is a singular point of the transformation and is excluded. 

in the 5 direction, 
The solution of this problem can be extracted by applying a cosine integral transform 

$%T) = (;)y $‘i’(E,r,I)cossEd5, (3.12) 

to Laplace’s equation and the boundary conditions, solving the resultant ordinary 
differential equation, applying the boundary conditions, inverting the solution via 
the inverse transform 

$(i)($, 7 )  = (:)* 1; $(i)(s, 7) costsds (3.13) 

(see, for example, Erdklyi et al. 1954, p. 158, noting errata), reversing the conformal 
transformation C2 = z and introducing the symmetry relations 

sin (nz*) = sin* (nz), cos (nz*) = cos*(nz), S2(m*) = S$(nz), C,(m*) = C,*(nz), 

where the asterisks denote complex conjugates and where 8, and C2 are the Fresnel 
integrals 

(3.14) 
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To satisfy the condition @(i) -+ 0 as 7 + 00, k,, = 0 is the value on the dividing streamline. 
The result for the stream function 9' = $(a) - $(") is 

$'(x, y, t ,  yl) = n-l sin (ny +yl) sin n(r - t )  

- n - ~ s i n y , [ c o s n t ~ { - c o s n z S , (  -nz)-sinnzC,( -nz) 

+ cos nz C,( - nz) - sin nz S,( - nz) + sin nz> 

- sin nt 9{ - cos nzS,( - nz) - sin nzC2( - nz) 

- cos nxC,( - nx) + sin nzX2( - nz) + cos nz)], (3.15) 

whereW{A} denotes the real part of A .  If the arguments of the Fresnel integrals are left 
as shown, then the numerical evaluation follows without modification of standard 
complex square-root subroutines. For small values of z ,  the Fresnel integrals are 
evaluated from the power series at the zero point (see, for example, Abramowitz & 
Stegun 1965, p. 301). Asymptotic series can be used for large 1x1. 

Note first from (3.15) that when the plate coincides with a boundary between vortex 
rows (yl = 0) qVi) = 0. Hence 9' = yVa) and the plate does not influence the flow field 
since no change in the vortex structure is necessary to satisfy the impermeability 
condition. Second, note that the solution can be rewritten in the form 

@' = 7+kl(a, y) sin y, sin nt + @,(T, y) sin y, cos nt 

+ @ ~ ( ~ , y ) c o s ~ , s i n z r t + ~ ~ ( x ,  y)cosy,cosnt.  (3.16) 

The functions ki follow directly from (3.15) and are not presented here. Hence the flow 
field for any values of the shifting parameter y1 and time t consists of a superposition 
of the four basic cases (yl, t )  = (in, t ) ,  (an, 0 ) ,  ( 0 , t )  and (0 ,O).  The last two cases need 
not be considered since they represent the original array at two different times. 

The disturbance streamlines for the case of a head-on collisim between the plate 
and the vortex array (yl = an) are shown in figure 3 for t = $. Also shown are the 
'absence ' or free-stream solution upstream of the plate and the 'far-downstream' 
solution to  be developed later. Note the upstream influence of the plate. Also note that 
bisection of a vortex yields two vortices of combined height less than that of the original 
vortex and that this transition in height occurs smoothly as fluid is absorbed by the 
vortices above and below the bisected row. The closeness of the streamlines near the 
leading edge indicates high disturbance speeds. The case of a head-on collision a t  
another time is illustrated in figure 4. 

Figure 5 shows the streamlines for a skewed collision (yl = - an). For this special 
value of yl, the dissected piece above the plate is completely absorbed by the vortex 
above as the array propagates downstream. Tracing a few streamlines around. again 
note the transfer of fluid between vortices incited by the leading edge. 

As the stream function is known, the velocities can be found as 

u(i) = - @$) = - i sin y, F(z ,  t ) ,  

di) = @$) = sin y1 F ( a ,  t ) ,  

where F = sin n ( z  - t )  [S,( - nz) - C,( - n z ) ]  
sin nt + cos nt - cosn(z-t) [S,( -772) +C,( - 772) - 11 - 

( -  2a)2 
20 F 1 . M  87 



694 H .  Rogler 

-Plate 

Free-st ream 
disturbance 

Leading-edge solution Fdr-dOWnStredm 
solution 

FIGURE 3. Disturbance streamlines for an array of vortices propagating along a semi-infinite 
plate for t = 4 and y1 = An. The streamlines of the free-stream disturbance and the flow field 
far downstream of the leading edge are also shown for comparison. 

As one approaches the leading edge along the - x axis, since S, and C, are regular at 
the origin, the normal velocity behaves as 

di) = O(r-3) as r -+ 0 from the left, 

where r is the radial distance from the leading edge. This singularity in the irrotational 
flow at the leading edge has the same behaviour as the singularity at  the trailing edge 
of a finite plate in unsteady aerodynamics (11) and as the leading-edge singularity in 
steady linearized airfoil theory. To satisfy our assumption of small amplitude dis- 
turbances, then, we must remain outside the ‘very small’ region of diameter O($) 
near the leading edge, where E = q/U,. 

To extract the asymptotic behaviour of I,W far from the leading edge, separate 
expansions are required upstream and downstream of the leading edge. Upstream, the 
auxiliary functions (Abramowitz & Stegun 1965, p. 300) 

f(z) = [+ - S(z)]  cos (+m2) - [& - G(z)] sin (+m2), (3.17a) 

g ( z )  = [Q -. C(z)]  cos (+T.z~) + [+ - S(z)]  sin (Qm2), (3.17 b) 
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FIGURE 4. Disturbance streamlines for an array of vortices propagating along a, semi-infinite 
plate for t = 0 and y1 = +n. 

where C ( z )  = C2($nzz) and X(z) = X2($nz2), are introduced into (3.15), yielding 

@(i) = siny, (cosnt&?{f-g}-sinntW{f+g})/n-. (3.18) 

Upstream of the leading edge, the asymptotic expansions 

m \ 

I .z~(z)  N 1 +  ( - l ) m . 1 . 3 . . . ( 4 ~ - 1 ) / ( n ~ 2 ) 2 m  
m=l 

J m 

m=O 
n-zg(z)  - (-l)m.l.3 . . . ( 4 m + l ) / ( n ~ ~ ) ~ ~ + ~  

are applicable. Retaining only the first term gives 

sin y1 1 sin $91 (cos nt - sin n-t) 
2n2r4 

@ i )  - 

(3.19a) 
as z+m, jargzl <&n, 

(3.19 b )  

as r+m, (3.20) 

where z = reie, n < 161 < $77 and hence 2-1 < I sin $01 < 1 in the upstream region. Note 
the slow algebraic, O(r-g), decay of the plate influence. For times near t = 4 and $, the 
coefficient cos nt - sin nt is very small, and more rapidly decaying solutions are possible 
from higher-order terms. 

20-2 
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FIGURE 5. Disturbance streamlines for an array of vortices propagating along a semi-infinite 
plate for t = and y1 = -4.. 

Directly upstream of the plate, we form the ratio E of the above contribution (for 
t = 2.) to the maximum l/n of the absence stream function a t  the centres of the 
vortices to provide an estimate of the distance upstream where the plate influence is 

negligible. The result is r > sin2yl/n2E2. (3.21) 

If E = 0.1 and y1 = 877, then r > 9 diameters. 
Either from the above asymptotic relation or, more directly, from (3.15) since the 

Fresnel integrals approach 4 far upstream, p) -+ 0 as r --f co and $’ --f $-@) as expected 
since far upstream the free-stream disturbance should be recovered. 

Far downstream, C2( - nz) -+ - $i and S,( - 772) + +i as x+ 00 for positive values of y. 
After some manipulation, (3.15) reduces to 

$’ = +(a) - r1 sin y1 e-nv sin n(x - t ) .  (3.22) 

Hence the solutions far upstream and far downstream differ. The latter solution will be 
derived in a more direct manner in Q 5 and discussed there. 

4. Double-averaged variables and correlations 
We now ‘double-average ’ the disturbance variables over one time period and over all 

possible values of the shifting parameter in the range 0 < y1 < 2n. For example, the 
double-average of d2 is 



Free-stream turbulence and semi-infinite fiat plates 597 
- - - _  - 

Now 7 = 7 = 0, but generally $: 0, u‘d + 0, etc. This averaging is equivalent to 
an ensemble average over an infinite number of realizations with time and the shifting 
parameter randomly specified. Although each realization is well ordered, the double- 
averaging partially alleviates the problem of the vortices lining up in straight rows and 
columns and more nearly models the time or ensemble averages of turbulence (V and 
VI). We proceed to extract as much information as possible from our analysis with one 
wavenumber. 

The averaging is now used to form the two-point, one-time, longitudinal velocity 

where r is the separation distance. The related two-time, one-point correlation trans- 
formed to a spatial correlation via Taylor’s hypothesis r = At (for a mean flow of unity) 
is 

where the subscript T denotes that Taylor’s hypothesis has been introduced. 
Analogously, the double lateral correlations g and gT associated with the normal 
disturbance velocity u‘ can be defined. We shall restrict attention to separations in the 
x direction since we are interested in comparing f with fT and g with gT to test the 
validity of Taylor’s hypothesis. 

If+’ is known, u‘ andv’ can be found and substituted into the correlations f T  and g T ,  
and the double-averaging carried out. The simple results are 

fT(r) = gT(r) = cosnr (4.4) 

for all reference points x and y. 
Similarly, f and g can be found. The analysis is simplified if we write u’ and v’ as 

u‘ = fl sin y1 sin nt + fi sin y, cos nt + f, cos y, sin nt + f4 cos y, cos nt, (4.5) 

v’ = g, sin y1 sin nt + g, sin y1 cos nt + g, cos y1 sin nb + g4 cos y, cos nt, (4.6) 

where the functions fi(x, y) and gi(x, y)  (i = 1,  ..., 4) are given in the appendix. In 
terms of these functions, the double-mean quantities are 

(4.7) 

If these expressions are substituted into equation (4.2) for the correlation f ( r ;  x, y), then 
that correlation can be numerically evaluated for any base point (x, y) and separation 
distance r of interest. Analogously, the functions gi permit the evaluation of the two- 
point lateral correlation g( r ;  x, y). 
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FIGURE 6. Two-point double-averaged longitudinal and lateral velocity correlations near the 
leading edge for ( a )  x = - & and various y values and ( b )  y = 0 and various upstream x values. 

The correlationsf, fT, g and gT are plotted in figures 6 (a) and ( b )  for several reference 
points (x, y) upstream of and beside the leading edge. In  figure 6 (a), the reference point 
is one-quarter of a vortex scale upstream of the leading edge and:several distances 
normal to the plate. The disparities between f and f T  and between g and gT reflect the 
distortion of the vortex structure effected by the plate. Whenever the disturbance 
streamlines are convected with the uniform flow without a change in structure, all 
four correlations vary as cos nr. Whenever that pattern changes, Taylor's hypothesis is 
not valid andf, and g, differ from f and g, respectively. 

As can be seen in figures 3-5, the distortion is large near the leading edge, and that 
result is reflected in figure 6 (a), particularly for y = &, by irregular correlations and a 
discrepancy between those correlations using Taylor's hypothesis and those using the 
exact velocities. As the distance from the leading edge increases, the four correlations 
become more similar. Since contributions from the pressure-gradient terms are invali- 
dating Taylor's hypothesis near the leading edge, the contours of constant disturbance 
pressure shown in figure 10 and discussed later also indicate where the pattern convects 
and where it distort,s. 

In figure 6 ( b ) ,  the correlations are shown for reference points directly upstream of 
the leading edge. As the reference point (x, 0) approaches the leading edge, the lateral 
correlation diminishes. The longitudinal correlation for this special reference position 
(y = 0) is unaffected by the plate because ap'/i3x = 0 (to linear order) directly upstream 
of the plate, as shown in figure 10. 

Generally, the assumptions under which Taylor's hypothesis is considered valid for 
a turbulent flow include a uniform mean flow, negligible viscous diffusion over the 
separation distance and low intensity, as noted by Taylor (1938), Corrsin & Uberoi 
(1952), Lin (1950, 1953), Hinze (1959, p. 40) and VII. While these assumptions are 
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identically satisfied in the present model, an additional restriction is that the flow 
cannot be in the 'immediate vicinity' of a leading edge, where impermeability causes 
distortion of the velocity field. 

S. The solution far downstream 
Far downstream of the leading edge, we expect its influence to vanish and the flow 

field to approach some unchanging pattern which convects with the mean flow. The 
boundary-value problem is thus 

V % , P = O  for -co < x <  co, 0 6  y<co (5.1) 

(5.2) 

$(i)-+O as ~ 3 0 3 ,  (5.3) 

subject to I,P)(x, 0; t, yl) = n--1 sin y1 sin n(x - t ) ,  

where it is understood that this problem has physical significance only for large x 
although the x domain extends to - co. To ensure the existence of the x transform, a 
generalized Fourier transform? 

m 

$.(i)(a, y, t ,  yl) = lim +)(x, y, t ,  yl) exp (iax - x2/az) dx (5.4) 

is applied to the equation and boundary conditions, where a is the real wavenumber 
and a is a convergence factor. Solving the ordinary differential equation, applying the 
boundary conditions and inverting the transform according to 

a+m .J- m 

yields 

in agreement with (3.22) above. At the wall, $' = 0 and the impermeability condition 
is satisfied. As y+co, and the original vortex array in the free stream is 
recovered. 

The longitudinal disturbance velocity follows as 

u' = - $; = - [cos (ny + yl) + e-ng sin yl] sin n(x - t ) .  (5.7) 
(a)  ( b )  

At the wall, for the special caseyl = - in the interesting result emerges that u' = 0 for 
all x and t ,  and thus the velocity field in this inviscid problem also satisfies the no-slip 
condition as shown in figure 7, where the streamlines of one coltlmn for other values of 
the shifting parameter are also shown. When y1 = in-, u' = - 2bsinn(x-t), which is 
the maximum disturbance speed in the far-downstream domain ; the maximum speed 
in the free stream is unity. Infinite speeds arise at  the leading edge, however. 

t Although this problem provides experience in the application of this powerful tool, a 
solution of the form $(y) sin n(z - t )  can be assumed and $(y) then found as the solution of an 
ordinary differential equation. 
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4’,=0 

FIGURE 7. Columns of disturbance streamlines for the far-downstream solution for a semi- 
infinite plate. 

6. The counting and boundary paradoxes ; the distinction between contours 

Several complications arising in the interpretation of eddying flow fields will now be 
illustrated. The ‘counting paradox ’ is illustrated in figure 8. The question is: are there 
three or are there four vortices in each column? The left column is the disturbance 
streamline pattern while the right is the equi-vorticity pattern for the same flow field 
a t  the same instant of time and the same position. Whereas the streamlines indicate 
that there are four vortices, the vorticity pattern indicates that  there are three! The 
structure of the same flow field can be so different when cast in terms of different 
variables that we identify different numbers of the basic units of structure. 

The ‘boundary paradox’ is shown in figure 9, where the streamlines of ‘two’ 
vortices are plotted. If there are two vortices, then the question is: where is the bound- 
ary between these vortices? From the left, one dashed line appears to separate the two 
vortices, while from the right, another seems to be the ‘boundary’. The two vortices 
labelled A and B in figure 9 appear also in figure 5, where i t  can be seen that vortex B 
and a third vortex, labelled C, combine to  form a fourth vortical system with a single 
streamline labelled D.  Hence the definition of any boundary must allow for several 
vortical systems to be embedded within one another. 

Both paradoxes arise from the confusion associated with the definition of a vortex. 
The first emphasizes the distinction arising frGm different variables, while the second 
illustrates a problem with one variable. The examples illustrate that our intuitive desire 
to  identify ‘eddies’ or other striictures in a turbulent flow requires the investigator 

of constant vorticity and streamlines 
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FIGURE 8. The counting paradox. Are there three or are there four vortices? 

FIGURE 9. The boundary paradox. Where is the boundary between these vortices? 

to  be sensitive to the variables displayed and to the possibility of vortical systems being 
embedded within other vortices. 

Motivated by these anomalies, we now list several definitions and observations 
regarding two-dimensional vortices : 

(i) A vortex based on contours of constant vorticity (or alternatively, based on 
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streamlines) occupies the region bounded by the contours of constant vorticity (or 
contours of constant stream function). It is possible for vortices to be embedded within 
one another. 

(ii) A vortex can be defined on the basis of either closed contours of constant vor- 
ticity or streamlines, but the vortices based on the two definitions might not occupy 
the same space or have common boundaries. The contours of constant vorticity and 
streamlines coincide if the stream function and vorticity are proportional. 

(iii) A vortex based on streamlines is generally different for observers translating 
a t  different velocities. If the mean flow is uniform, however, the vortices based on the 
contours of constant vorticity are the same for all observers in co-ordinate systems 
which are uniformly translating (but not rotating). The same conclusion also holds for 
the more general case of irrotational mean flows. 

(iv) There is no requirement that either the equi-vorticity contours or the stream- 
lines close (e.g. a plane wave of vorticity in a whole plane). They may close in one direc- 
tion but remain open in the other direction (thus forming a U-shaped pattern), but 
these cases will not be considered here. 

7. Fluctuating pressure 
Like the stream-function and vorticity disturbances, the pressure disturbance can 

be separated into ‘absence’ and ‘impermeability’ contributions: p‘  = ~ ( ~ ) - p ( ~ ) .  As 
shown previously (Taylor 1936; V), p(a)  = O(pp2) in agreement with many familiar 
forms of turbulence. Tn the present analysis, the nonlinear convective terms are 
O(q/U,) and are neglected relative to the linear terms, which are O(1). Hence to unit 
order, p(a) = 0. This result does not discount pressure variations far away from the 
plate, which must exist to provide the centripetal force causing a fluid particle to orbit 
about the vortex centre, but rather means that these pressure variations are associated 
with the nonlinear terms, which have been neglected. 

Consider now the dimensional linearized momentum equations for a uniform mean 
flow: au; au; 1 apt 

ax, paxi 
) i = 1,2. - at +urn- =- - -  

In the vicinity of the leading edge, the velocity field does not generally convect with 
the mean flow because of t,he pressure terms. I n  that region, we assume that the sum of 
the linear inertial terms is not O(q2/A) but rather O( Urn q / R )  and thus we non-dimen- 
sionalize t,he pressure according to p’ +pqUrnp‘. The dimensionless momentum 
equations are therefore u; + u: = - p i  and t i ; +  v: = - p  h. Now we separate all variables 
into absence and impermeability components (e.g. u‘ = da) - uci)), obtaining 

The left-hand sides are zero since the linearized momentum equations also apply far 
upstream. 

Following the development of the usual unsteady Bernoulli equation, the potential 
#i) is introduced, where di) = - $2) and di) = - $?), and where v:) = u$) since the 

Hence up+u$) = -p$ ) )  vp’+v$) = -p$ (7.4)) (7.5) 
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FIGURE 10. Contours of constant pressure arising when an array of vortices impinges on a semi- 
infinite plate for y1 = 67r and t = *. A discontinuity in pressure arises across the plate. 

impermeability flow is irrotational. Hence the unsteady linearized Bernoulli equation 
for the impermeability flow field is 

(7.6) 

Note that the velocity uti) does not appear squared but rather to the first power. If 
$(i) is known, then t'he potential = - iyW can be found, differentiated, introduced 
into the Bernoulli equation, and the derivatives evaluated, yielding 

(7 .7)  

- &) +p'O + u(0 = c ( t )  = 0. 

p' = -pCi) = 9?{i sin y1 (cos nt + sin nt)/n( - 22)4}, 

or alternatively, by letting reia 3 z where 0 < 0 < 27r, 

(7 .8)  p' = cos $?sin y1 (cos nt + sin nt)/n( 2r)&. 

Eote that this fluctua.ting pre.ssure vanishes everywhere when sin y1 = 0, i.e. when the 
plate coincides with a boundary between the rows of free-stream vortices. It also 
vanishes along the x axis upstream of the plate and far away from the leading edge in 
any direction. The pressure oscillates sinusoidally in time with maximum amplitude 
when y1 = k in, i.e. when the plate bisects a row of free-stream vortices. Above the 
plate, the pressure is either a maximum or a minimum when the plate has penetrated 
through one-quarter of a vortex. Since p ' ( z )  = -p'(z*), a discontinuity in pressure 
arises across the plate. A singularity in pressure arises at  the lending edge which would 
be eliminated in practice by local separation, cavitation of a liquid, compressibility of 
a gas, viscous effects or a finite plate thickness, which would permit a rounded 
leading edge. 

The contours of constant pressure are plotted in figure 10. Note the smooth variation 
in pressure across the x axis upstream of the plate in contrast to the pressure jump 
across the plate and the large fluctuations near the leading edge. These contours of 
const,ant pressure are similar in shape and can be collapsed into a single curve if the 
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radial co-ordinate and pressure are further non-dimensionalized with respect to some 
position x* along the plate and the surface pressure p* at that position respectively. 
Since p* = sin y, (cosnt +sinnt)/n(2x*)&, p’/p* = cos (O/Z) / ( r /x* )* .  

In  analogy with the double-avera#ges of the velocities, the root double-average of the 
pressure disturbance can be found as (dimensionally) 

- 
(p)* = pUmqA*Icos+01/2nr*. (7.9) 

Note the effect of the vortex scale A on the pressure fluctuation. 

8. Summary, conclusions and recommendations 
The instantaneous flow field associated with an array of vortices convecting down- 

stream towards and alongside a plate has been found. Fundamental changes in the 
structure of that vortical flow field occur as it encounters the plate. The vorticity 
fluctuations are distributed, rather than concentrated as point vortices, so as to 
represent more closely the patches of vorticity, eddies and turbulence encountered in 
engineering practice. We have focused on the spanwise component of vorticity in this 
study of unseparated leading-edge effects. 

The three domains associated with a vortex array propagating towards and along- 
side a semi-infinite plate are as follows: 

(i) The free-stream domain, where the free-stream disturbances are negligibly 
influenced by the presence of the plate. The iso-vorticity contours and the disturbance 
streamlines coincide and convect with the mean flow. The vortices line up in straight 
rows and columns and the disturbance pressure is O(pq2). 

(ii) The leading-edge domain, which is a transition region between the free-stream 
disturbances and those far downstream of the leading edge. Significant distortion of the 
streamline patterns occurs as the plate cuts through the vortices, and relatively large, 
O(pqU,), pressure fluctuations are produced, even though the vorticity pattern is 
unaffected by the presence of the plate in this linear analysis. The velocities are periodic 
in time, but not in space. Taylor’s hypothesis is generally not valid as a result of the 
vortices distorting. The vortices intertwine, with some streamlines encircling several 
vortices. Sometimes, small pieces of a vortex which is cut off-centre by the plate are 
completely absorbed by a neighbouring vortex, However, the changes in structure 
depend upon whether one examines the iso-vorticity contours or the disturbance 
streamlines. While the major adjustment to the plate occurs near the leading edge, the 
slow algebraic, O(r-3))  decay indicates that the leading edge weakly influences the flow 
field far away. Very near the leading edge and along the plate, viscous and nonlinear 
effects are significant. 

(iii) The far-downstream domain, where the vorticity and stream-function fields are 
periodic in the x direction and in time, but the patterns are different. However, both 
patterns are composed of straight columns and rows of vortices which are convected 
along without any further change in structure. The pressure fluctuation is O(pq2). Very 
near the plate, viscous effects would be important, and nonlinear and viscous effects 
on the vortices would become increasingly significant further downstream. 

The vorticity dynamics are much simpler than the stream function or velocity 
field in this problem. The vorticity convects with the mean flow, but the stream func- 
tion is subject to the impermeability condition, which must be applied only along the 
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+x axis. While the velocity field is quasi-steady and depends only on the instan- 
taneous distribution of vorticity, the pressure field must be found from the unsteady 
Bernoulli equation and is significantly influenced by the unsteadiness. 

Although we have used an array of square vortices as our free-stream disturbance, 
the impermeability stream function (3.15) with t,he first term removed can be applied 
to many two-dimensional disturbances with normal velocities which oscillate along the 
x axis and which satisfy t,he conditions specified. Such disturbances include oblique 
plane waves of vorticity, arrays of rectangular vortices and oscillating vortex sheets, 
but also include irrotational fluctuations induced by ‘far-away ’ wavy walls. Effects of 
phase speeds different from the free-stream velocity, i.e. c + U,, can be accounted for 
in the stream function and velocities merely by non-dimensionalizing with c as the 
characteristic mean velocity, although other effects arise from the pressure. 
Consequently, what is presented here is a tool for analysing many forms of free-stream 
disturbance interacting with a plate. Fourier analysis may be used to apply these 
results with one wavenumber and phase speed to more general periodic or aperiodic 
disturbances. 

Suggestions for future research include studying three-dimensional rectangular 
prismatic vortices or other three-dimensional disturbances interacting with the 
leading edges of plates (of zero and finite thickness) and the boundary layer developing 
along the plate. Detailed numerical and experimental studies of leading-edge effects, 
including unsteady separation, are also needed. 

The author acknowledges stimulating discussions with Dr E. Reshotko, Dr G. 
Janowitz and Dr R. Arora. A plotting program written by Dr J. Paul was used for 
figures 3-5, 9 and 10. Financial support was provided by the Air Force Office of 
Scientific Research under Grants AFOSR-74-2477A & B. 

Appendix. Functions in the velocity correlations 
The derivatives I++; = v’ and - 4; = u’ can be found by using the Liebnitz rule to 

differentiate the Fresnel integrals. The results for the functions associated with the 
longitudinal velocity in 9 4 are 

f, = - cos nx sin ny + S{sin nz  X2( - nz) - cos nz C2( - nz) 

f 2  = sinnzsinny-S{sinnzS,( -nz)-cosnzC2( -nz) 

f3 = cosnxcosny, f, = -sinnxcosny. 

+ sin nzC2( - nz) + cos nzS2( - n z )  - sin nz + 1/n( - 2z ) t } ,  

- sin nzC2( - nz) - cos nzS2( - n z )  + cos irrz - 1/n( - 2z ) t } ,  

The related functions associated with the normal velocity are 

g ,  = sin nx cos ny + W{sin nz S2( - nz) - cos nz C2( - m) 

g2 = cos nx cos ny + W{ - sin nz X,( - n z )  + cos nz C2( - nz) 

g3 = sin nx sin ny, 

+sin nzC2( - nz) + cos nzX2(  - n z )  -sin nz + 1/n( - 2z) t } ,  

+sin nzC2( - nz) + cos nzS2( - n z )  - cos nz + l/n( - 2z)6}, 

g ,  = cos nx sin ny. 
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